
Subtleties and Common Errors of Programming in C

Sasha (Alexandre) Avreline
UBC BCS Teaching Assistant, Summer-Fall 2019

last updated: September 1, 2019

Abstract. This guide aims to take a closer look at subtleties and common errors
encountered when programming in C and is intended for students taking CPSC 213 or
subsequent courses at UBC.

Notes. This guide is meant as a supplement to those learning C and addresses specific
situations rather than trying to provide a comprehensive introduction to the language. All
examples are presented for illustrative purposes only and are not meant to give away solutions
to any assiged course work problems. Any lengthy code snippets contained in this document
must be referenced appropriately when used elsewhere.

Contents

1 C is Pass By Value 2

2 Returning Multiple Values 4

3 Incrementing Pointers and Values 5

4 Side Effects of Incrementing a Pointer 6

5 Avoiding Memory Leaks due to String.h Functions 8

6 Pointers vs Arrays 9

7 Fancy and Silly Loop Constructs 11

8 Arguments to Main 12

9 Malloc, Calloc, Realloc and Buffers 14

10 Casting Void Pointers 15

11 An Example: Splitting a String 17

1

1 C is Pass By Value
All function arguments in C, with the exception of arrays are passed in by value. This

means that any operations done on those arguments remain local to the function, unless

(1) their values are returned from the function, or

(2) in addition, a pointer pointing to the memory location of the underlying variable was
passed in and that location was modified.

Unlike in C++, there are no reference operators & in C. The ampersand’s (&) primary
uses in C are to either specify an address or its use as a bitwise AND operator.

Why are arrays so special? Well because in C, array parameters, regardless of the
notation, are always passed in as pointers, see section 6 for a more in-depth discussion.

In the following example, in the function foo1, lines 9, 11 and 13 have absolutely no
effect on the values of p, q and pnt in main, as all operations done in those lines remain
local to foo1. However, line 10 does modify the value of p, as per line 26, q is a pointer that
points to the memory location of p. Therefore, print statement on line 31 prints 12.

1 // passingValues1.c

2 #include <stdio.h>

3

4 typedef struct Point {

5 int x, y;

6 } Point;

7

8 void foo1(int p, int *q, int a[], Point pnt) {

9 p = p + 2;

10 *q = *q + 2;

11 q = 0;

12 a[0] = a[0] + 2;

13 pnt.x = 300;

14 }

15

16 void foo2(int p, int *q, int **r) {

17 *r = 0;

18 r = 0;

19 q = &p;

20 }

21

22 void main(void) {

23 Point pnt = {100, 200};

24 int a[] = {1, 2, 3, 4, 5};

25 int p = 10;

26 int *q = &p;

27 int **r = &q;

28

29 foo1(p, q, a, pnt);

30

31 printf("The value of p is %d\n", p); // 12

32 printf("The value of q is %#x\n", q); // 0x...

33 printf("The value of *q is %d\n", *q); // 12

34 printf("The value of a[0] is %d\n", a[0]); // 3

35 printf("The value of pnt.x is %d\n", pnt.x); // 100

36

37 foo2(p, q, r);

38

39 printf("The value of q is %#x\n", q); // 0

40 printf("The value of r is %#x\n", r); // 0x...

41 printf("The value of *r is %#x\n", *r); // 0

42 }

2

Likewise, line 12 does modify the value of a[0] as a is an array. Therefore, the print
statement of line 34 prints 3.

So, as discussed, the statement q = 0 on line 11 had no effect. What if we did really
want to set q to be a null pointer for some reason? One way to do so, would be to pass in
a pointer pointing to q, a double pointer! This is illustrated on line 27 and in the function
foo2. After the value of the double pointer r is set to 0 on line 17, q becomes a null pointer
in main. However, lines 18 and 19 of foo2 have no further effect on any variables in main
due to C’s pass by value architecture.

In summary:

� to change the value of a regular variable in some function (without returning anything
from that function), pass a pointer to that variable;

� to change the value of a pointer in some function (again without returning anything
from that function), pass another pointer (i.e. a double pointer) to that variable.

Here is another example: func1 does nothing as far as changing the value of a is
concerned, yet func2 does change the value of a. Likewise, func3 does nothing as far as
changing the value of pointer a, yet func4 does change the value of the given pointer. Take
a close look at the symmetry, similarities and differences between the four functions!

1 // passingValues2.c

2 #include <stdio.h>

3

4 void func1(int a, int b) {

5 a = b;

6 }

7

8 void func2(int *a, int b) {

9 *a = b;

10 }

11

12 void func3(int *a, int *b) {

13 a = b;

14 }

15

16 void func4(int **a, int *b) {

17 *a = b;

18 }

19

20 void main(void) {

21 int i = 1;

22 int j = 2;

23 int k = 3;

24 int *x = &i;

25 int *y = &k;

26 int **v = &x; // v points to x, which points to i

27

28 func1(i, j); // does nothing

29 printf("The value of i is %d\n", i); // 1

30

31 func2(x, j); // sets value of x to j

32 printf("The value of i is %d\n", i); // 2

33

34 func3(x, y); // does nothing

35 printf("The value of *x is %d\n", *x); // 2

36

37 func4(v, y); // points x to k (and not i)

38 printf("The value of *x is %d\n", *x); // 3

39 }

3

2 Returning Multiple Values
All functions in C are limited to returning just one value. What happens if we need to

return more than one value from a function? The two approaches are: structs and pointers.

1 // returningValues.c

2 #include <stdio.h>

3

4 typedef struct Point {

5 int x, y, z;

6 } Point;

7

8 Point foo1(int x, int y, int z) {

9 x += 10;

10 y += 20;

11 z += 30;

12 Point p = {x, y, z};

13 return p;

14 }

15

16 void foo2(int *a, int *b, int *c) {

17 *a = *a + 1;

18 *b = *b + 2;

19 *c = *c + 3;

20 }

21

22 void main(void) {

23 int x = 1, y = 2, z = 3;

24

25 Point p = foo1(x, y, z);

26 x = p.x, y = p.y;

27 z = p.z;

28

29 printf("x is %d\n", x); // 11

30 printf("y is %d\n", y); // 22

31 printf("z is %d\n", z); // 33

32

33 int *a, *b, *c;

34 a = &x, b = &y, c = &z;

35

36 foo2(a, b, c);

37

38 printf("x is %d\n", x); // 12

39 printf("y is %d\n", y); // 24

40 printf("z is %d\n", z); // 36

41 }

Suppose we would like to update x, y and z in foo1. Since C is pass by value, and there
are no pointers passed to foo1, so foo1 must return the updated values. Therefore, those
values have to be packaged into a struct. Struct is declared on lines 3-5 and a new struct is
then constructed on line 11 and is returned on line 12. Lines 27-29 print updated values of
x, y and z.

As an aside: declaring struct using the typedef notations saves the need to write the
keyword struct whenever a new struct of that type is used.

Another way to update the values of all x, y and z, as discussed in the previous section,
is to pass in pointers that point to their memory locations. In this example, pointers are
declared and are initialized accordingly on lines 31-32. The values they point to are updated
in the function foo2 which has a return type of void. Lines 36-38 print the updated values
of x, y and z.

4

3 Incrementing Pointers and Values
We are all familiar with the standard shortcuts for incrementing or decrementing a value:

i++, ++i, i-- and --i. Recall that placing the operator before the value increments or
decrements the value before it is used. How do those operators behave when there are
pointers involved?

The increment (or decrement) operator has a higher precedence than the dereference
operator *, so writing *p++ or *++p increments the address stored in the pointer and not
the value that the pointer points to. Therefore, lines 8 and 12 move the pointer p to point
to elements 2 and 3 of the array, respectively. On line 8, the pointer is post-incremented, so
at that point, it is still the value of the first element of a that gets saved into x. On line 12;
however, the pointer is incremented first, so it is already the value of the third element of a
that gets saved into y.

If brackets are placed around the dereference operator *, then the dereference operator
is applied first, before the increment operator. Therefore, on lines 16 and 20 it is the value
that is pointed to by p gets incremented, and not the address that is stored in the pointer.
Likewise, a post-increment happens on line 16, so the original value of 30 gets saved into v,
while a pre-increment takes place on line 20.

1 // pntInc.c

2 #include <stdio.h>

3

4 void main(void) {

5 int a[] = {10, 20, 30, 40, 50};

6 int *p = a;

7

8 int x = *p++;

9 printf("After *p++ the value of x is %d\n", x); // 10

10 printf("After *p++ the value of *p is %d\n", *p); // 20

11

12 int y = *++p;

13 printf("After *++p the value of y is %d\n", y); // 30

14 printf("After *++p the value of *p is %d\n", *p); // 30

15

16 int v = (*p)++;

17 printf("After (*p)++ the value of v is %d\n", v); // 30

18 printf("After (*p)++ the value of *p is %d\n", *p); // 31

19

20 int w = ++(*p);

21 printf("After ++(*p) the value of w is %d\n", w); // 32

22 printf("After ++(*p) the value of *p is %d\n", *p); // 32

23 }

As an aside: we didn’t really need brackets on line 20. Writing int w = ++*p; would
have had the same effect. Why? Precedence of operators ++ and *, in addition to other
rules, is also determined on a right-to-left basis in C, and since * is further to the right in
this case, it is applied first. However, please do not rely on complex analysis like this when
writing complex C code. When in doubt, use brackets! In fact, for clarity, lines 8 and 12
could been equally written as int x = *(p++); and int y = *(++p);.

5

4 Side Effects of Incrementing a Pointer
One needs be careful of side effects whenever incrementing pointers in place: the address

stored in the pointer changes, and unless this is accounted for, the program could crash or
exhibit unpredictable behavior.

Consider the following example. There, foo is a function that makes a copy of the
input string and returns the copy. There are of course functions strdup and strcpy in the
C’s string library that do the same, this example here is for illustrative purposes. Also for
illustrative purposes, the copy is done dynamically via pointer arithmetic.

The while loop increments both the str and cpy pointers, copying the values pointed to
by str into memory pointed to by cpy. The new string is null terminated on line 11 (null
terminating the strings is of course something very important to do in C!). Then on line 12
it seems natural to return cpy, as that is where we stored the new string. However, after
all of those increments that happened in the while loop, cpy now points to the end of the
string. Therefore, nothing gets printed on line 18 and then the program crashes as an invalid
pointer is passed into free on line 19 (i.e. a pointer that no longer points to the beginning
of the memory region allocated by malloc on line 7).

1 // pntIncS0.c

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5

6 char *foo(char *str) {

7 char *cpy = malloc((strlen(str) + 1) * sizeof(char));

8 while (*str)

9 *cpy++ = *str++;

10

11 *cpy = ’\0’;

12 return cpy;

13 }

14

15 int main() {

16 char *str = "abcde";

17 char *cpy = foo(str);

18 printf("Result is %s\n", cpy);

19 free(cpy);

20 }

There are two ways to fix this issue. First approach, which is not recommended, is to move
any incremented pointers back to their original locations. In particular, instead of returning
cpy, we could return cpy - strlen(str) which effectively undoes all incrementation done
to cpy in the while loop.

However, we must also be careful to save strlen(str) into a variable at the beginning
of foo, as the str gets moved to the end of the string by the while loop as well, and any
subsequent calls to strlen would return 0. The code presented below executes without any
errors or memory leaks.

6

1 // pntIncS1.c

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5

6 char *foo(char *str) {

7 int len = strlen(str); // !!!

8 char *cpy = malloc((strlen(str) + 1) * sizeof(char));

9 while (*str)

10 *cpy++ = *str++;

11

12 *cpy = ’\0’;

13 return cpy - len; // !!!

14 }

15

16 int main() {

17 char *str = "abcde";

18 char *cpy = foo(str);

19 printf("Result is %s\n", cpy);

20 free(cpy);

21 }

A better approach, which doesn’t require any manual accounting of pointer locations,
is simply to save the address of the beginning of the new string into a new pointer. In the
code presented below, original value of cpy is saved into cpy pnt on line 8. Then cpy pnt

remains fixed, while cpy is incremented in the while loop. At the end, cpy pnt is returned
from foo as is and there are no issues or memory leaks.

1 // pntIncS2.c

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5

6 char *foo(char *str) {

7 char *cpy = malloc((strlen(str) + 1) * sizeof(char));

8 char *cpy_pnt = cpy; // !!!

9 while (*str)

10 *cpy++ = *str++;

11

12 *cpy = ’\0’;

13 return cpy_pnt;

14 }

15

16 int main() {

17 char *str = "abcde";

18 char *cpy = foo(str);

19 printf("Result is %s\n", cpy);

20 free(cpy);

21 }

A third approach is, of course, to just avoid any pointer arithmetic or any dynamic
allocation. The code becomes much simpler. The main trade off is that all string sizes need
to be specified when strings are declared. Some memory is wasted as string sizes are usually
declared to be somewhat of an arbitrary length that is larger than expected string lengths,
so that there is some additional buffer just in case (typical value of string length is 81, for
an 80 character string with an extra character for the null pointer at the end). However, in
many applications, this is perhaps a rather small price to pay for safer code. Sample code is
presented below.

7

1 // pntIncS3.c

2 #define STR_LEN 81

3 #include <stdio.h>

4 #include <string.h>

5

6 void foo(char *str, char *cpy) {

7 int i = 0;

8 while (str[i])

9 cpy[i++] = str[i];

10

11 cpy[i] = ’\0’;

12 }

13

14 int main() {

15 char str[STR_LEN] = "abcde";

16 char cpy[STR_LEN];

17 foo(str, cpy);

18 printf("Result is %s\n", cpy);

19 }

5 Avoiding Memory Leaks due to String.h Functions
In section 4, we saw how copying strings dynamically requires allocation of new memory

on the heap and that such memory must be eventually freed to avoid memory leaks. What
about when C’s build-in string functions from string.h are used? Do they allocate memory
that must be freed? The answer is yes.

Consider the following code which uses build-in strdup function to duplicate a string. If
this code is ran with line 10 commented out, then Valgrind states there is a memory leak.
Once line 10 is enabled, there are no more memory leaks.

This phenomenon is an example when free must be called without a corresponding
existence of an explicit malloc call anywhere in the code (i.e. the malloc happens inside the
implementation of the strdup function)!

1 // strMemLeak1.c

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5

6 int main() {

7 char *str = "abcde";

8 char *cpy = strdup(str);

9 printf("Result is %s\n", cpy);

10 free(cpy);

11 }

To avoid such hassles and any manual memory management, we could, once again, use
statically declared strings and the function strcpy. This function doesn’t allocate any new
memory, since it expects to be given a destination location as an argument.

1 // strMemLeak2.c

2 #define STR_LEN 81

3 #include <stdio.h>

4 #include <string.h>

5

6 int main() {

7 char str[STR_LEN] = "abcde";

8 char cpy[STR_LEN];

9 strcpy(cpy, str);

10 printf("Result is %s\n", cpy);

11 }

8

6 Pointers vs Arrays
As mentioned in section 1, pointers and arrays in C are closely related. In particular, array

parameters, regardless of the notation, are always passed in as pointers. In the following
code, four different versions of function foo are presented. All version calculate the sum of
elements of the array a:

� foo1 accepts input a as an array and uses array notation to compute the sum,

� foo2 accepts input a as a pointer and uses array notation to compute the sum,

� foo3 accepts input a as a pointer and uses pointer arithmetic to compute the sum,

� foo4 accepts input a as an array and uses pointer arithmetic to compute the sum.

All functions compile and compute the sum without errors. In foo3 and foo4 the for loop
does not have an initial condition, since a already points to the start of the array. It is
important to determine the end of the array and store it into the variable aEnd prior to the
start of the loop, as the value a + n will increase whenever a is incremented in the loop.

1 // arrayPnt1.c

2 #include <stdio.h>

3 #include <string.h>

4

5 int foo1(int a[], int n) {

6 int sum = 0;

7 for (int i = 0; i < n; i++)

8 sum += a[i];

9 return sum;

10 }

11

12 int foo2(int *a, int n) {

13 int sum = 0;

14 for (int i = 0; i < n; i++)

15 sum += a[i];

16 return sum;

17 }

18

19 int foo3(int *a, int n) {

20 int sum = 0;

21 int *aEnd = a + n;

22 for (; a < aEnd; a++)

23 sum += *a;

24 return sum;

25 }

26

27 int foo4(int a[], int n) {

28 int sum = 0;

29 int *aEnd = a + n;

30 for (; a < aEnd; a++)

31 sum += *a;

32 return sum;

33 }

34

35 void main() {

36 int a[] = {1, 2, 3, 4, 5};

37 int n = 5;

38

39 printf("Foo1 sum is %d\n", foo1(a, n));

40 printf("Foo2 sum is %d\n", foo2(a, n));

41 printf("Foo3 sum is %d\n", foo3(a, n));

42 printf("Foo4 sum is %d\n", foo4(a, n));

43 }

9

Stepping away from arguments to a function, where array and pointers are essentially the
same, let us look at some of the differences between pointers are arrays. Array elements could
be accessed using pointer notation as shown on lines 17-18 below, but pointer arithmetic is
not appropriate with array variables, such as on line 21.

However, as discussed on the previous page, passing an array variable to a function enables
pointer arithmetic to be done, as is done in foo below. Also, explicitly casting an array to
a pointer enables pointer arithmetic to be done as well, as is shown on lines 24-27 below.

1 // arrayPnt2.c

2 #include <stdio.h>

3 #include <string.h>

4

5 int foo(int a[], int n) { // OK!

6 int sum = 0;

7 int *aEnd = a + n;

8 for (; a < aEnd; a++)

9 sum += *a;

10 return sum;

11 }

12

13 void main() {

14 int a[] = {1, 2, 3, 4, 5};

15 int n = 5;

16

17 for (int i = 0; i < n; i++) // OK!

18 printf("val is %d\n", *(a + i));

19

20 int *aEnd = a + n;

21 for (; a < aEnd; a++) // does not compile

22 printf("val is %d\n", *a);

23

24 int *b = a;

25 int *bEnd = b + n;

26 for (; b < bEnd; b++) // OK!

27 printf("val is %d\n", *b);

28

29 printf("Sum is %d\n", foo(a, n));

30 }

Next, since arrays are statically declared, their values cannot be re-assigned. For example,
line 2 in the following code does not compile. Re-assigning pointers on the other hand is
totally fine. For example, lines 4 and 5 compile and any of the foo functions from the previous
page could determine the sum of b to now be 40.

1 int a[] = {1, 2, 3, 4, 5};

2 a = {6, 7, 8, 9, 10}; // does not compile

3

4 int* b = (int[]) {1, 2, 3, 4, 5};

5 b = (int[]) {6, 7, 8, 9, 10}; // OK!

Similar behavior is exhibited in the following example with strings, which are just
character arrays in C. In particular, strings statically declared in C cannot be re-assigned;
however, some ways to modify such strings are:

(1) on an element-by-element basis, for example via str[1] = ’a’;, or

(2) by implicitly casting them to a pointer when passing to C’s string library functions
(see line 7 below and also the last example of section 5).

10

1 char str1[] = "abcde";

2 str1 = "fghij"; // does not compile

3

4 char* str2 = "abcde";

5 str2 = "fghij"; // OK!

6

7 strcpy(str1, str2); // OK! str1 is cast to char* when passed into strcpy

8 // strcpy copies str2 directly into str1

7 Fancy and Silly Loop Constructs
In the previous section, in functions foo3 and foo4 we saw loop constructs without initial

values. In fact we can take this idea further and write for loops without any expressions at
all inside the for expression. The following code is written in a silly way, but computes the
sum of a just fine.

1 // loops1.c

2 #include <stdio.h>

3

4 void main() {

5 int a[] = {1, 2, 3, 4, 5};

6 int n = 5, sum = 0;

7

8 for (int i = 0; i < n; i++)

9 sum += a[i];

10

11 printf("Sum is %d\n", sum);

12

13 sum = 0;

14

15 int j = 0;

16 for (;;) {

17 if (j >= n)

18 break;

19 sum += a[j];

20 j++;

21 }

22

23 printf("Sum is %d\n", sum);

24 }

Recall that the break keyword causes the loop to exit right away. The continue keyword
causes the current iteration of the loop to exit, but the the subsequent iterations of the loop
will continue to run.

It is also possible to construct loops with multiple initial values, as well as multiple
terminating conditions and multiple update expressions. In the following example, lines
5-13 and lines 15-22 do the exact same work and print the exact same values, yet the first
for loop uses just one index i, while the second one uses two indices i and j.

11

1 // loops2.c

2 #include <stdio.h>

3

4 void main() {

5 puts("\n");

6 int a[] = {1, 2, 3, 4, 5};

7 int n = 5;

8

9 for (int i = 1; i < n; i++)

10 a[i] += a[i - 1];

11

12 for (int i = 0; i < n; i++)

13 printf("Final value of a[%d] is %d\n", i, a[i]);

14

15 puts("\n");

16 int b[] = {1, 2, 3, 4, 5};

17

18 for (int i = 1, j = 0; i < n; i++, j++)

19 b[i] += b[j];

20

21 for (int i = 0; i < n; i++)

22 printf("Final value of b[%d] is %d\n", i, b[i]);

23 }

There is also the goto construct in C, which results in an unconditional jump to some
predetermined label, as is shown in the code snippet below. In this code, while loop will exit
and line 5 will be skipped. Frequent usage of continue and goto keywords is considered
poor coding style.

1 while (1) {

2 goto mylabel;

3 }

4

5 printf{"some text");

6

7 mylabel:

8 printf{"some more text \n");

8 Arguments to Main
C’s main function takes in two arguments:

1. int argc is an integer that stores the number of command line arguments passed to
the program, when the program was called from the command line

2. char **argv is an array that contains those command line arguments as strings (i.e.
as char pointers, so argv is an array of char pointers often declared as char *argv[])

The first element of argv array is usually name of the program itself, and thus the value
of argc is one greater than the actual number of arguments supplied. So, for example,
typing into the command line programName 1 23 4 5 results in the following values for the
arguments to main:

� argc: 5

� argv: {‘‘programName’’,‘‘1’’,‘‘23’’,‘‘4’’,‘‘5’’}

If the function expects numeric arguments, since arguments are stored as strings in argv,
the strtol function must be used to convert them into long integers. The strtol function
requires the following arguments:

12

� the string to be converted into the long integer

� a char** usually denoted ep (stands for “error pointer”) into which strtol will save
any left over non-numeric characters

� numeric base to be used in the conversion (i.e. 2, 8, 10, 16)

If, after the call to strtol, the value of ep is null, then conversion was successful and the
command line argument was indeed a number; otherwise ep is not null and will contain any
left over non-numeric characters.

Overall, there are three steps to be done in main with respect to the arguments:

1. check the value of argc to see if the correct number of arguments has been supplied
when the program was called,

2. convert the values of argv into long integers using strtol, if integer arguments are
expected,

3. use the arguments

Below are two examples of these steps. In the first case, args, the array that is used to store
converted arguments is allocated statically, while in the second case, this array is allocated
dynamically, based on the value of argc. In this case the program expects anywhere from 2
to 4 arguments. Since the first value of the argv array is usually the name of the program,
care must be taken with respect to loop indices when getting values from this array (as well
as with the value of argc which is one greater than the actual number of arguments).

1 // mainArgs1.c

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 int main(int argc, char **argv) {

6

7 // Check no.

8 if (argc < 2 + 1 || argc > 4 + 1) {

9 printf("Invalid no. of arguments\n");

10 return -1;

11 }

12

13 char *ep;

14 int args[4];

15

16 // Convert

17 for (int i = 0; i < argc - 1; i++) {

18 args[i] = strtol(argv[i + 1], &ep, 10);

19 if (*ep) {

20 printf("An argument is not a number, x is %d, value of *ep is %s\n",

21 args[i], ep);

22 return -1;

23 }

24 }

25

26 // Use args

27 for (int i = 0; i < argc - 1; i++)

28 printf("Argument %d is %d\n", i, args[i]);

29

30 return 0;

31 }

1 // mainArgs2.c

2 #include <stdio.h>

13

3 #include <stdlib.h>

4

5 int main(int argc, char **argv) {

6

7 // Check no.

8 if (argc < 2 + 1 || argc > 4 + 1) {

9 printf("Invalid no. of arguments\n");

10 return -1;

11 }

12

13 char *ep;

14 int *args = malloc(argc * sizeof(int));

15

16 // Convert

17 for (int i = 0; i < argc - 1; i++) {

18 args[i] = strtol(argv[i + 1], &ep, 10);

19 if (*ep) {

20 printf("An argument is not a number, x is %d, value of *ep is %s\n",

21 args[i], ep);

22 free(args);

23 return -1;

24 }

25 }

26

27 // Use the args

28 for (int i = 0; i < argc - 1; i++)

29 printf("Argument %d is %d\n", i, args[i]);

30

31 free(args);

32 return 0;

33 }

9 Malloc, Calloc, Realloc and Buffers
The following calls to malloc and calloc are almost identical and will allocate the same

amount of space for your needs. The only major difference is that calloc sets the entire
allocated memory space to “0”, while malloc does not. Therefore, malloc is generally faster
and is of course more commonly used.

� malloc(n * sizeof(X))

� calloc(n, sizeof(X))

The realloc function is used to expand the allocated memory region, when the space
initially allocated by malloc or calloc has been exhausted. The realloc function takes in
a pointer to the existing memory space and the total size of the expanded memory region. It
returns a (potentially totally different!) pointer to the allocated memory region. Therefore,
it is very important to update the value of the pointer to the allocated memory region, to
the value returned by realloc; otherwise, subsequent calls to realloc or free will fail. The
realloc function would have automatically freed any existing pointers it was given, had it
changed the location of the allocated memory region.

On the following page there is a basic example that illustrates a typical use of realloc.
Memory for a string of length BUF SIZE is initially allocated by malloc on line 9 and
characters are added to this string from the command line input via the getchar method,
until the return key is pressed. If the number of characters typed in exceeds BUF SIZE, then
realloc is called on line 21 to expand the size of the buffer.

1 // mem.c

14

2 #define BUF_SIZE 10

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 int main() {

7 int count = 0;

8 int cur_size = BUF_SIZE;

9 char *text = malloc(cur_size * sizeof(char));

10

11 printf("Type in your input\n");

12

13 while (1) {

14 char c = getchar();

15

16 if (c == ’\n’)

17 break;

18

19 if (count >= cur_size) {

20 cur_size += BUF_SIZE;

21 text = realloc(text, cur_size * sizeof(char));

22 }

23

24 text[count++] = c;

25 }

26

27 text[count] = ’\0’;

28 printf("The text is %s\n", text);

29 free(text);

30 }

10 Casting Void Pointers
Descendants of C such as C++ and Java support generic programming as well as class

and function templates. For example, in C++ or Java, it is possible to construct a template
class for a queue of some generic type T and then create specific instances of this queue where
T is an integer, a string, etc. In fact, all of C++’s standard library containers are generic
templates, which is why this library is called the “standard template library”.

In C, the idea of generic programming is partially supported via void pointers: void*.
Essentially, void pointers are often used to bypass C’s type check system and to have functions
which are open to accepting arguments of any type. This approach allows to construct
function wrappers that wrap around groups of similar functions. Having said that, void
pointers are acceptable only places in such as argument declaration and must be cast to
specific types when those arguments are actually used. All this is best illustrated using an
example.

In the following example, there is a struct called “Student” that would be used to store
information that is contained in a student’s academic record. Essentially, the components
of the struct behave sort of like fields would in an object oriented language. Then there are
the setter functions for each of the first four fields, which are very similar to each other,
expect that some set fields that are of the integer type, and others set fields that are of the
string type. The goal is to group those setter functions and to allow them to be called via
the setField wrapper which also performs some console logging tasks that are common to
all of the setter functions.

1 // voidPnt.c

2 #include "stdio.h"

15

3

4 typedef struct Student {

5 char **first_name;

6 char **last_name;

7 int *year;

8 int *gpa;

9 int *id;

10 } Student;

11 char *fields[] = {"FirstName", "LastName", "Year", "GPA"};

12 enum FIELDS {FIRSTNAME = 0, LASTNAME = 1, YEAR = 2, GPA = 3};

13

14 void setFirstName(Student *s, void *fn) {

15 s->first_name = (char **)fn;

16 }

17

18 void setLastName(Student *s, void *ln) {

19 s->last_name = (char **)ln;

20 }

21

22 void setYear(Student *s, void *year) {

23 s->year = (int *)year;

24 }

25

26 void setGpa(Student *s, void *gpa) {

27 s->gpa = (int *)gpa;

28 }

29

30 typedef void (*FunctionTemplate)(Student *s, void *val);

31 FunctionTemplate functions_array[] = {setFirstName, setLastName, setYear, setGpa};

32

33 void setField(int i, Student *s, void *val) {

34 printf("Changing %s for student no: %d.\n", fields[i], *(s->id));

35 functions_array[i](s, val);

36 printf("Procedure %s completed for student no: %d.\n", fields[i], *(s->id));

37 }

38

39 int main() {

40 char *fn = "John";

41 char *ln = "Doe";

42 int year = 2;

43 int gpa = 80;

44 int id = 9999;

45 Student s = {&fn, &ln, &year, &gpa, &id};

46

47 char *new_name = "Jane";

48 setField(FIRSTNAME, &s, &new_name);

49 printf("%s\n", *(s.first_name));

50

51 int new_year = 3;

52 setField(YEAR, &s, &new_year);

53 printf("%d\n", *(s.year));

54

55 int new_gpa = 90;

56 setField(GPA, &s, &new_gpa);

57 printf("%d\n", *(s.gpa));

58

59 return 0;

60 }

To do so, it is critical that all setter functions take in the same number of arguments of
the same type. Here is where void pointers come in handy. The functions that set first and
last name need the student record and the new names as arguments. The functions that set
year and GPA need the student record and the new year or new GPA as arguments. Names
are strings, year and GPA are integers. In order for all functions to share the same argument
list, the second argument must have void* type.

16

As soon as all setter functions are set up to take in the same argument list, they could
be grouped into an array of function pointers as done on lines 30-31. Moreover, having
an enum on line 12 that converts field names into integers allows for the setter functions
to be called in a very readable way, such as setField(FIRSTNAME, &s, &new name). The
setField method wraps some console logging commands, common to all setter functions
calls, around the actual function call.

Of course, as mentioned, in the actual setter functions it is then very important to cast
the void pointers into the types those functions are meant to work with. For example, in the
setFirstName function, the cast is done via (char **)fn. In practice, many compilation
errors are simply from forgetting to cast void pointers prior to using them.

11 An Example: Splitting a String
In the final section of this guide, three different implementations of a longer example are

presented to illustrate some of the ideas discussed.

The task at hand is to split a string into segments that are separated by some specific
delimiter or token. A specific example could be splitting up a fully qualified domain name,
such as www.example.com into the individual components which are www, example and
com in this case (the token here is “.”). Or it could be splitting up a file path into
individual components: /path/to/dir into path, to and dir (the token here is “/”). String
manipulation in C is always a challenge, so this example presents another opportunity to
practice that.

The approach will be to use the strtok function from the string.h library. The function
takes two arguments: the string to be split and the token. Then it returns the first component
of the string, up to the first discovered token. In order to get subsequent components, the
strtok function is repeatedly called, this time with null as the first argument.

It should be noted that strtok is a destructive function, in the sense that the given string
will be destroyed. In particular, the way strtok works is by replacing all discovered tokens
with null characters, which forms separate null-terminated strings out of the components.
Therefore, prior to using strtok, it is wise to make a copy of the string you are working
with.

In the first approach to this task, everything is done statically. In particular, it is
assumed that there will be at most 10 token-separated components in the given string and
that each of those components will be at most 80 characters long. Those values are used
to declare a two dimensional static array of chars, called components, where the discovered
components will be saved to. The split str function takes in the input string, the token
and the components array to store the results. Note that when a two dimensional array is
declared in the argument list to this function, there is no need to specify the first dimension,
but specifying second dimension is a must.

A copy of the input string is made on lines 8-9. The char token is converted to a string on
line 10 (in particular, a null-terminating char is added), this is needed as strtok requires a
char* as the second argument. Initial call to strtok happens on line 13, and subsequent calls

17

are done on line 16, inside the while loop. The while loop continues while there are non-null
results returned from strtok (i.e. while new components are discovered). The results are
copied into appropriate locations in the components array via the strcpy function.

1 // splitStr1.c

2 #define NO_OF_COMPONENTS 10

3 #define STR_LEN 81

4 #include <stdio.h>

5 #include <string.h>

6

7 int split_str(char *input_str, char token, char components[][STR_LEN]) {

8 char input_str_copy[STR_LEN];

9 strcpy(input_str_copy, input_str);

10 const char *token_string = (char[]){token, ’\0’};

11

12 int i = 0;

13 char *result = strtok(input_str_copy, token_string);

14 while (result) {

15 strcpy(components[i++], result);

16 result = strtok(NULL, token_string);

17 }

18

19 return i;

20 }

21

22 int main() {

23 char components[NO_OF_COMPONENTS][STR_LEN];

24 char *str = "www.example.com";

25 char token = ’.’;

26

27 int i = split_str(str, token, components);

28 printf("Input string is %s\n", str);

29

30 for (int j = 0; j < i; j++)

31 printf("Component is %s\n", components[j]);

32 }

In the second approach, things are done dynamically. This time, no assumptions are
being made about how many token-separated components there will be in the given string,
nor about how long they will be. As before, the components array is a two dimensional
char array; however, in this case, it is initialized dynamically via malloc in the split str

function.

In order to work with the components array dynamically and not waste any space, we must
know how many token-separated components there are in the given string. Therefore, the
number of tokens in the given string is first counted in the while loop on lines 10-12. Then,
on line 16, this count is used to allocate an array of char pointers that is large enough to hold
the result. Note that here it is the sizeof(char *) [4 bytes] and not the sizeof(char) [1
byte] that is passed to malloc.

Why is the length of the allocated array i + 2? Well if there are i tokens discovered
in the while loop on lines 10-12, there will be i + 1 token separated components (i.e. in
www.example.com there are two tokens and three components). As for i+ 2, the last spot in
the array will be used to store a null pointer (see line 25). This way, the calling function (and
any other function that makes use of the result) could determine the length of the array,
without the length being explicitly passed back. In fact, this construction is applied in the
while loops that start on lines 38 and 43. Essentially, the construction here is similar to the

18

construction of C’s null-terminated string.

The rest of the code is quite similar to the one in the previous approach. In fact, lines
7, 15, 19, 20 and 22 are exactly the same. Pointer arithmetic is used in all of the while
loops; therefore, the pointer to the start of the components array is saved into a different
pointer prior to the start of the loops (lines 17 and 37) – c.f. section 4. Also in this approach
strdup is used to duplicate the input string instead of strcpy and the memory from strdup

is freed on line 26 – c.f. section 5. The actual component strings that are duplicated into
the components array on line 21 are freed on line 44.

1 // splitStr2.c

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5

6 char **split_str(char *input_str, char token) {

7 int i = 0;

8 char *input_str_copy = input_str;

9

10 while (*input_str_copy++)

11 if (*input_str_copy == token)

12 i++;

13

14 input_str_copy = strdup(input_str);

15 const char *token_string = (char[]){token, ’\0’};

16 char **components = malloc((i + 2) * sizeof(char *));

17 char **components_pnt = components;

18

19 char *result = strtok(input_str_copy, token_string);

20 while (result) {

21 *components++ = strdup(result);

22 result = strtok(NULL, token_string);

23 }

24

25 *components = NULL;

26 free(input_str_copy);

27 return components_pnt;

28 }

29

30 int main() {

31 char *str = "www.example.com";

32 char token = ’.’;

33

34 char **components = split_str(str, token);

35 printf("Input string is %s\n", str);

36

37 char **components_pnt = components;

38 while (*components)

39 printf("Component is %s\n", *components++);

40

41 // free memory

42 components = components_pnt;

43 while (*components)

44 free(*components++);

45 free(components_pnt);

46 }

In the third approach, the goal is to address two issues with the dynamic approach that
was just presented:

1. there is an extra while loop that first counts the number of components, and

2. the components array that stores the result gets created and initialized inside the

19

split str function (unlike in the first approach where this array was created and
initialized in main)

The approach developed here may not be more efficient than the second one and is
presented more for illustrative and educational purposes.

Use of realloc would addresses the first concern: the initial assumption will be that there
will be no discovered components. So, on line 28, malloc allocates an array large enough just
to store the null pointer that terminates the array. Then, as each additional component is
discovered, realloc increase the array’s size by one on line 15. The while loop on lines 13-16
no longer uses pointer arithmetic as the components pointer must be updated to point to a
potentially new memory region after each call to realloc and should not be independently
incremented.

1 // splitStr3.c

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5

6 void split_str(char *input_str, char token, char ***components_addr) {

7 int i = 0;

8 char *input_str_copy = strdup(input_str);

9 const char *token_string = (char[]){token, ’\0’};

10 char **components = *components_addr;

11

12 char *result = strtok(input_str_copy, token_string);

13 while (result) {

14 components[i] = strdup(result);

15 components = realloc(components, (++i + 1) * sizeof(char *));

16 result = strtok(NULL, token_string);

17 }

18

19 components[i] = NULL;

20 *components_addr = components;

21 free(input_str_copy);

22 }

23

24 int main() {

25 char *str = "www.example.com";

26 char token = ’.’;

27

28 char **components = malloc(sizeof(char *));

29 char ***components_addr = &components;

30 split_str(str, token, components_addr);

31 printf("Input string is %s\n", str);

32

33 char **components_pnt = components;

34 while (*components)

35 printf("Component is %s\n", *components++);

36

37 // free memory

38 components = components_pnt;

39 while (*components)

40 free(*components++);

41 free(components_pnt);

42 }

Use of a triple pointer addresses the second concern. The components array is a double
char pointer and the value of this pointer is changed inside the split str function, due to
calls to realloc. Therefore, to allow split str to keep the void return type, components

20

must be passed into it by pointer, which makes the type of this argument a triple pointer
(double pointer plus one) – c.f. sections 1 and 2. The value of the triple pointer is updated
on line 20.

Beyond those two changes, everything in the code presented in this approach is similar or
identical to the code presented in the second approach.

References
[1] Kochan, Stephen. Programming in C, Fourth edition. Addison-Wesley Professional:

2014.

[2] “The C++ Resource Network”, http://www.cplusplus.com/

21

	C is Pass By Value
	Returning Multiple Values
	Incrementing Pointers and Values
	Side Effects of Incrementing a Pointer
	Avoiding Memory Leaks due to String.h Functions
	Pointers vs Arrays
	Fancy and Silly Loop Constructs
	Arguments to Main
	Malloc, Calloc, Realloc and Buffers
	Casting Void Pointers
	An Example: Splitting a String

