
Chevrotain: A Conflict-free Replicated Data Type
Key-Value Store

Sasha Avreline
savrelin@students.cs.ubc.ca

Univeristy of British Columbia
Vancouver, British Columbia, Canada

ABSTRACT
Chevrotain is a multi-primary replicated key value store that
achieves eventual consistency through the use of conflict-
free replicated data types (CRDTs). This paper describes
the designs, evaluates performances, and compares three
different approaches to the implementation of Chevrotain.
One of the approaches is based on the state-based CRDT
model (CvRDT), while the other two approaches are based
on the operation-based CRDT model (CmRDT), that is either
completely unsynchronized or makes limited use of synchro-
nization. Latency and consistency of all implementations are
measured as a function of throughput, and are compared
to a simple replicated key-value store that only makes a
minimal effort to maintain consistency. Results are also com-
pared with the performance of MongoDB’s built-in primary-
backup replication system. Scalability is also studied. Results
show that the CvRDT implementation of Chevrotain demon-
strates the best performance. In particular, this implementa-
tion achieved sub-second latency under a throughput of 10
000 operations per second while maintaining perfect even-
tual consistency in three, five, seven and ten-replica systems.
Moreover, this implementation, from an end-user’s perspec-
tive, was able to sustain higher throughput than MongoDB’s
built-in replication system. A proof-of-concept application
to distributed web crawling is also presented.

KEYWORDS
eventual consistency, conflict-free replicated data types, key-
value stores

1 INTRODUCTION
In distributed systems there is always the tension between
maintaining consistency and demonstrating high perfor-
mance. On one end of the spectrum there is strong con-
sistency which implies that the distributed system behaves
like a single machine that serializes all operations. Strong
consistency maintains perfect data consistency at all times,
at the expense of high latency due to the need for synchro-
nization and constant communication between nodes. On
the other end of the spectrum is eventual consistency which
allows for the states of the distributed replicas to temporarily

diverge and meet later in time. Eventual consistency results
in a lower frequency of communication which leads to better
performance; however, eventual consistency could lead to
data inconsistencies and data loss [12].

Some of the recent research focused on trying to strike a
balance between strong consistency and high performance.
This has led to the emergence of mixed consistency seman-
tics, such as RedBlue consistency, consistency rationing, PSI
and Horus [12],[11],[15],[16]. In such semantics, strong con-
sistency is enforced on the operations that depend on the
data to be immediately consistent, while weak consistency is
used with operations for which a high degree of consistency
is not necessary. An alternate approach is for programmers
to design the distributed system in a way that does not re-
quire strong consistency at all. This is the approach that is
used in concept of conflict-free replicated data types (CRDT)
[14], which is the focus of this paper.
In CRDTs, the distributed system is designed such that

either the states of replicas could be merged in a conflict-free
way at any point in time (state-based RDT or CvRDT) or
that any updates to the states of the replicas are only done
in a conflict-free way (operation-based RDT or CmRDT)
[14]. This paper presents the design, implementation and
performance evaluation of Chevrotain, a CRDT-based key-
value store. Three different approaches to implementation of
Chevrotain are considered. One of the approaches is based
on the CvRDT model, while the other two approaches are
based on the CmRDT model, either with or without limited
synchronization.
Key-value stores present a flexible data storage model

that has widespread use, which allows Chevrotain to be
appropriate tool for a variety of applications. We present one
such application, a distributed web crawler, in section 5.

This paper begins by briefly describing the mathematical
foundations behind CRDTs in section 2. The designs of all
proposed implementations of Chevrotain are then detailed
in section 3. Section 4 presents the performance evaluation
results, while sections 5-8 briefly survey applications, future
work, related work and present the conclusion.

Sasha Avreline

2 BACKGROUND
2.1 CvRDT
In state-based replication, each update that is executed at a
replica modifies the state of that replica. Then, at specified
intervals in time, every replica broadcasts its local state to
the other replicas, which merge the received state into its
own [14].
For the merges to be conflict-free, the states of replicas

must resemble a monotonic semilattice object. A monotonic
semilattice is a term from mathematical set theory [10] but
in the context of CRDTs it means the following [14]:

• there is a partial order that could be used to order
the states,

• the merge operation computes the least upper bound
(defined below) of the two states, and

• the states are monotonically non-decreasing across
updates (as in the state that follows an update is
ordered after the state that precedes the update).

As mentioned, the merge operation must compute the
least upper bound of the local and incoming states. The least
upper bound (or join) is another term from set theory [10]
that effectively means that the merge operation determines
the maximal state of the local and incoming states.

The original work on CRDTs [14] provides some examples
of what determining maximal state during the merge might
look like. The classical example is vector clocks where the
merge method takes the maximum of each respective entry.
Another classical example provided by [14] is concerned
with merging logs: the merge method just takes the union
of the local and incoming logs.
A key-value store could be represented by a collection

of sets that consists of a set of keys and a set of values for
each key. There are several state-based CRDT frameworks
for sets and one such framework is the LWW-element-set
(last-write-wins-element-set). In this framework, for any set,
two sets are maintained: an “add” set and a “remove” set.
Elements are added to the LWW-element-set by being added
to the add set and are removed from the LWW-element-set by
being added to the remove set. All additions and removals are
marked with Lamport timestamps. An element is a member
of the LWW-element-set if it is a member of the add set and
is either not in the remove set or is in the remove set but
is marked with an earlier timestamp than is marked in the
add set. In the case when the timestamps of the element in
the add and remove sets are identical, a user-defined bias
towards either the add or the remove operations comes into
play. Merging two replicas of an LWW-element-set entails
taking the union of the respective add and remove sets [13].

2.2 CmRDT
The other approach to CRDTs is operation-based. Instead of
having replicas periodically exchange states, whenever an
update is executed at some replica, that update is propagated
to other replicas using a casual broadcasting communica-
tion protocol (CBCAST) [8]. Then there are two possible
scenarios:

• either the updates are ordered by CBCAST and are
executed in that order at each replica, or

• the updates appear to be concurrent.
In the first scenario there are no issues and no conflicts.

However, if the updates appear to be concurrent, then one
of the following must be the case:

(1) either the updates are commutative (as in, the order
in which they are applied at a replica is irrelevant
and either order results in the same final state), or

(2) the updates are delayed until all concurrent updates
have been received and any conflicts between those
updates are resolved in a systematic way, or

(3) some other, application-specific approach is formu-
lated that allows concurrent updates to proceed with-
out any synchronization.

It is not the case by any means that all operations are
commutative; therefore, some of the updates will require
resorting to approaches described by either 2 or 3 above. In
this paper, we will present a conservative implementation
approach that follows the approach of point 2 and requires a
limited degree of synchronization between replicas. This ap-
proach will be referred to as CmRDT-C. We will also present
a more optimistic implementation approach, that follows the
approach of point 3 and requires no synchronization. This
approach will be referred to as CmRDT-O.

3 DESIGN AND IMPLEMENTATION
The general system layout, that is the same across all imple-
mentations, is shown in figure 1. The entire implementation
is written in Golang and each replica contains a local copy of
a MongoDB 4.4 database. A client communicates with repli-
cas by making RPC calls to the methods made available by
the RPCExt object. The methods available to a client through
the RPCExt object are the following:

• InitReplica (timeInt int, bias Bias)
• InsertKey (key string)
• InsertValue (key string, value string)
• RemoveKey (key string)
• RemoveValue (key string, value string)
• TerminateReplica ()

The InitReplica method initializes the replica’s internal
data structures and establishes its connections to other repli-
cas. A group membership file that lists other replicas’ IP

Chevrotain: A Conflict-free Replicated Data Type Key-Value Store

addresses and port numbers is provided for this purpose.
Once a replica has been initialized, a client sends commands
to the replica by the virtue of the remaining methods. In the
CvRDT implementation, commands are processed locally,
and state updates are broadcast to other replicas periodically
with a time interval specified by the timeInt argument. In the
CmRDT implementations, commands are processed locally
and are then immediately broadcast to other replicas. All
inter-replica communication happens through the methods
made available by the RPCInt object, the exact make up of
this object is implementation specific.

Figure 1: General System Layout

3.1 CvRDT
A typical workflow of the CvRDT implementation is shown
in figure 2. Each local copy of the database holds two col-
lections: a positive collection and a negative collection. The
collections respectively store all the “add” and all the “re-
move” sets of the LWW-element-set. We will refer to positive
and negative collections as the dynamic collections.
Suppose a client makes an RPCExt call to the InsertKey

method. Since a key is being inserted, this key will be im-
mediately added to set of all keys in the positive collection
(had the RemoveKey method been called, the key would
been added to the same set in the negative collection) along
with the current Lamport clock timestamp. Then, at prede-
termined time intervals, specified at replica’s initialization,
the entire state of the local database will be downloaded
and broadcast to all other replicas. This is done by calling
the MergeState method of the RPCInt object on each replica.
Once a replica receives the incoming state, it merges that
state with its own state, by taking the union of the corre-
sponding sets in the corresponding collections. In particular,
during this merge, a replica adds any missing elements to
the correct set in its database. When merging dynamic col-
lections, elements are considered identical if and only if their
values and timestamps are identical.

The mergeCollections method merges the positive and
negative collections into a single collection, referred to as

the static collection. This method compares the timestamps
of all instances of a given element across both collections.
It then inserts the element into the static collection if and
only if its largest timestamp in the positive collection is
greater than its largest timestamp in the negative collection.
Should the element’s largest timestamps in the positive and
negative collections be the same, the element is inserted into
the static collection if indicated so by the bias set at replica’s
initialization. The bias tends to be application specific and is
left to be specified by the end-user.
In a basic implementation, the mergeCollections method

needs to run only whenever the user wishes to access the
data. However, such an approach leads to replicas always
broadcasting the entire states of their local databases and
substantially degrades performance. Therefore, in Chevro-
tain, the mergeCollections method runs following each state
broadcast. This approach, which is also known as garbage
collection, adds complexity but improves performance. Repli-
cas agree on a current safe tick of the Lamport clock and all
entries of the positive and negative collections that are times-
tamped with timestamps smaller than this tick are moved
into the static collection. Those elements are also removed
from the positive and negative collections at the same time,
significantly reducing the size of the state that needs to be
broadcast.

Figure 3 shows an example of howmergeCollectionsworks
in practice. Suppose the current safe tick is 8; therefore, ele-
ment 3 will be inserted into the static collection as just the
entry {“3”, 6} of the positive collection for element 3 is con-
sidered at this time. Should there be no further entries for
element 3, it will be removed from the static collection on the
next iteration once the entry {“3”, 10} is processed. Likewise,
element 4 will not appear in the static collection at this time
as the entry {“4”, 5} of the negative collection dominates over
the entry {“4”, 2} of the positive collection and the entry {“4”,
9} has not been processed yet.

In the current rather simple implementation, for all repli-
cas to agree on the current safe tick, a replica designated as a
leader collects the current timestamp ticks from all replicas as
replies to state broadcasts. It then takes the minimum among
those ticks and of its own current tick. The resulting tick
is included in the following state broadcast. Other replicas
then accept the leader mandated current tick. A more robust
implementation is considered in section 6 future work.

Replicaswait for the incoming state broadcast to bemerged
into the local state prior to merging the collections together.
This, along with the agreement on the current safe tick, en-
sures that elements are moved in exactly same blocks into
the static collection at all replicas when merging. This level
of determinism ensures there is no loss of consistency due
to merges and elements with equivalent timestamps are pro-
cessed in the same way at all replicas.

Sasha Avreline

Figure 2: Typical CvRDTWorkflow

Figure 3: Management of LWW-Element-Sets in
CvRDT

3.2 Types of Conflicts in CmRDT
Prior to going into the details of the CmRDT implementa-
tions, we will investigate the types of conflicts that can arise
between concurrent operations in the context of a key-value
store. The specific conflict resolution mechanisms will be
implementation specific. The operations that operate on dif-
ferent keys or on different key-value pairs are commutative
and can proceed in any order. As far as the other operations
are concerned, the following two types of conflicts can arise.
We will refer to the conflicts that arise between the fol-

lowing pairs of concurrent operations operating on the same
key or on the same key-value pair as type I conflicts:

• InsertKey, InsertValue
• RemoveKey, RemoveValue

Likewise, we will refer to the conflicts that arise between
the following pairs of concurrent operations operating on
the same key or same key-value pair as type II conflicts:

• InsertKey, RemoveKey
• InsertValue, RemoveValue

3.3 CmRDT-O: Optimistic Approach
The implementation of CmRDT-O is largely an adoption of
the implementation of a graph CRDT that is described in
section 5 of [14] to a key-value store. Each operation is split
into prepare-update and effect-update methods. The prepare-
update method is side-effect free and takes place only at
the replica to which the operation was initially delivered to.
The effect-update method applies the operation to the local
database and runs at each replica.
A typical workflow of the CmRDT-O implementation is

shown in figure 4. The CmRDT-O database initially main-
tains a collection of a set of keys and sets of values for each
key. This collection will be referred to as the dynamic col-
lection. In this collection, each instance of each element is
tagged with a unique id. When inserting a key or a value, the
prepare-update method generates a unique id for the key or
the value. The element-id pair is then immediately inserted
into the local database by the effect-update method and is
also broadcast to all other replicas to be processed by the
effect-update methods there (in particular, the element will
be inserted into the databases with the same id at all replicas).
A lock is used to ensure that the effect-update method imme-
diately follows the prepare-update method at the initiating
replica.
When removing a key or a value, the prepare-update

method generates the “removal” set which contains the unique
ids of all instances of the given element. The effect-update
then removes all those instances from the local database.
Finally, the element-ids pair is broadcast to all other replicas
for removal by the effect-update methods there (in particu-
lar, all replicas will remove the exact same instances of the
given element). Broadcasts are to be ordered according to
the vector clocks and therefore the incoming broadcasts are

Chevrotain: A Conflict-free Replicated Data Type Key-Value Store

Figure 4: Typical CmRDT-O (Optimistic Approach) Workflow

held at each replica until the correct broadcast arrives. To
achieve this, a channel is established to communicate with
each incoming RPCInt call. The channel of any RPCInt call
that is waiting on new broadcast messages to arrive is added
to a dynamic pool. Whenever the correct broadcast message
arrives, the updated local vector clock is broadcast to the
channel pool to see if any of the waiting RPCInt calls can pro-
ceed next. The GoVector package was adapted to provide the
vector clock functionality required for casual broadcasting
[5].

Fixation of the removal set by the prepare-update method
addresses the type II conflicts. There cannot be a concurrent
InsertKey and RemoveKey coming from the same replica
as those would be ordered by vector clocks on that replica.
Should there be a concurrent InsertKey and RemoveKey com-
ing from different replicas, InsertKey will take precedence as
the removal set associated with the call to RemoveKey will
not include the just-generated unique id of the instance of
the element to be inserted.
Type I conflicts are resolved by allowing an InsertValue

to proceed to the local database even if the corresponding
InsertKey has not arrived yet. Whenever an end-user wishes
to start looking up keys or values in the database, the dy-
namic collection is transformed into what is referred to as
the static collection by the lookup method. This method
presents a simple view of the data without the unique ids
and it also hides any inconsistencies. In particular, should the
InsertKey method never arrive, the inserted value will not be
copied over to the static collection and will not be displayed
whenever a user looks it up in the database. RemoveKey and
RemoveValue conflict is addressed in a similar way.

3.4 CmRDT-C: Conservative Approach
In the CmRDT-C implementation, a queue is used to order
operations at each replica and to resolve any conflicts that
arise between concurrent operations in a pre-determined,
systematic way. This implementation is perhaps an example
of how not to approach CmRDTs and was explored for the
sake of comparison. A typical workflow of the CmRDT-C
implementation is shown in figure 5. When a replica receives
a command from the client, it immediately timestamps the
command with the current vector clock and packages the
command into an OpNode struct. The OpNode struct, along
with the timestamp, contains all necessary information to
process the command. The OpNode struct is then inserted
into the local queue of OpNodes, where the OpNodes are or-
dered according to vector clocks. Finally, the OpNode struct
is also broadcast to all other replicas, where upon arrival, it is
likewise inserted into the local OpNodes queues. The queue
insertion mechanism first tries to locate an OpNode whose
timestamp is either ahead or behind the timestamp of the
incoming OpNode. If such an OpNode does not exist, then
the incoming OpNode is placed next to an OpNode with a
concurrent timestamp. Therefore, the queue may have one
or more blocks of one of more concurrent operations, as is
shown in figure 6.

Whenever the queue of OpNodes reaches a certain prede-
termined length or a certain amount of time has passed, it is
processed to resolve any conflicts between any concurrent
operations. The processed operations are removed from the
queue and are applied to the local database. Only the OpN-
ode whose timestamps can no longer be concurrent to the
timestamps of any forthcoming OpNodes are processed. To
determine this point on the queue, a maximum safe tick is

Sasha Avreline

Figure 5: Typical CmRDT-C (Conservative Approach) Workflow

Figure 6: Queue of Operational Nodes in the CmRDT-C

computed by taking the minimum of the maximum clock
ticks seen from all replicas.

For example, suppose that some replica has seen the OpN-
odes with the following vector clocks. Then the maximum
clock tick seen from replica 1 is 3, is also 3 from replica 2
but is only 2 from replica 3. Therefore, the maximum safe
tick in this case is min{3, 3, 2} which is 2. Therefore, only
the first six OpNodes will be processed as this point in time,
as all entries of the timestamps of those OpNodes are less
than or equal to the current maximum safe tick. In particu-
lar, it might still be possible to receive an operation whose
timestamp is concurrent to the timestamp of the seventh
OpNode, such a timestamp would be [2,2,3] coming from the
third replica. However, it is no longer possible to receive an
operation whose timestamp would be concurrent to any of
the first six timestamps.

1
0
0

 ,

0
1
0

 ,

0
1
1

 ,

1
2
1

 ,

2
2
1

 ,

2
2
2

︸ ︷︷ ︸
only those are processed at this time

,

3
2
2

 ,

3
3
2

In order to ensure that clock ticks of different replicas

do not grow far apart and hold up processing, replicas that
do not have any operations to contribute will send no-ops

at time intervals specified by the timeInt argument to the
InitReplica RPCExt call.
Once the queue has been cut off at the maximum safe

tick for processing, any conflicts found in the blocks of con-
current operations are addressed. First, blocks of concurrent
operations are scanned to determine if there are any conflicts
to be addressed. For a given block of concurrent operations,
there are two cases in which we can safely say there would
not be any conflicts:

• all operations within the block operate on different
keys and values, or

• all operations within the block are of the same type
(for example, all operations are InsertKey)

If a block of concurrent operations falls into either of the
above categories, it is left as is. Otherwise, operations within
the block are reordered to address any type I or type II con-
flicts. With respect to type I conflicts between concurrent
InsertKey and InsertValue operations that operate on the
same key, InsertKey is ordered to proceed first. Likewise, be-
tween concurrent RemoveKey and RemoveValue operations
that operate on the same key-value pair, the RemoveValue is
ordered to proceed first. As for type II conflicts, they are re-
solved in the same way as in the CvRDT implementation: as
per the user specified bias. As in the CvRDT implementation,

Chevrotain: A Conflict-free Replicated Data Type Key-Value Store

the bias towards adds or removes is passed as an argument
to the InitReplica RPCExt call.

4 EVALUATION
4.1 Methodology
The initial evaluation of throughput, latency and consistency
of all implementations was carried out using three Microsoft
Azure Standard D4s v3 VMs running Windows 2019 Data-
center Server with 4 vCPUs, 16GB of RAM and a separate
premium P30 SSD drive supporting 5000IOPS, 200MBps ded-
icated to Chevrotain. The initial VMs were geographically
distributed and situated in Central Canada, Southern UK and
Japan East.

A standard test set suite was used to collect all measure-
ments: at the beginning of the test, 210 key insertion com-
mands were distributed among the three replicas, immedi-
ately followed by five value insertion commands on each
key. At the end of the test, two of the values from each key
and 52 of the keys were removed. In total, given this test
suite, a client would send 1,723 commands to the replicas on
each run. The order of operations in the test was meant to
introduce type I conflicts. In all experiments, each test was
done five times and reported results are the average of the
five runs.

The client sent all commands asynchronously and was re-
sponsible for recording round trip latencies of each RPCExt
call. The client introduced set delays between subsequent
sends to emulate various levels of throughput. A “zero” imple-
mentation was used as a baseline reference. This implemen-
tation still followed the system layout outlined in figure 1;
however, once operations were received by the replicas, they
were immediately applied to the local databases, without any
additional processing to improve consistency.

A checker package was also used. This package connected
to the local copies of the databases at each replica and cross-
checked them for consistency. The consistency results are
reported as a percentage of entries that matched across the
databases and matched the reference of the intended view
of the database at the end of the test.

4.2 Initial Results
Measurements of latency as a function of throughput for
different implementations, except the CmRDT-C implemen-
tation are presented in figure 7. Measurements of consistency
as a function of throughput for the same implementations
are shown in figure 8. In all figures, CvRDT-GC stands for
the CvRDT implementation with garbage collection while
CvRDT represents the CvRDT implementation without any

garbage collection. All measurements were taken immedi-
ately after the client received responses to all of its com-
mands. The CmRDT-C implementation will be discussed in
the following section.

Figure 7: Latency as a Function of Throughput

Figure 8: Consistency as a Function of Throughput

Surprisingly, the CvRDT implementations achieved better
latency at lower throughput than the "zero" implementation.
In fact, the latency of the CvRDT-GC implementation re-
mains fairly steady as throughput is increased; however, this
is only strictly from the end-user’s perspective. The com-
mands sent to the CvRDT implementation from the client
return immediately and the round-trip times recorded by the
client don’t reflect the actual time needed to exchange and
merge states. To address this, whenever a client received a
response from the CvRDT replicas to all of its commands, the

Sasha Avreline

local databases were queried until their consistencies con-
verged to 100%. Approximate times required to reach this
point are shown in figure 9. Those delays are a strong func-
tion of the time interval between state exchanges specified
at initialization of each replica.

Figure 9: Merge Delays for CvRDT as Function of Time
Between State Exchanges at 10 000 ops/s

While the CvRDT implementations did eventually con-
verge and achieved perfect consistency, even at higher through-
put, this wasn’t the case in the CmRDT-O implementation.
The consistency achieved by the CmRDT-O implementation
rapidly dropped off once throughput went above 175 ops/s.
The exact cause of this behaviour hasn’t been determined
at this time, but it is suspected there is a problem in the
implementation of CBCAST.

4.3 CmRDT-C Results
The CmRDT-C implementation demonstrated a latency of
about 330 ms at 10 ops/s and below. Beyond 10 ops/s its
performance degraded rapidly and implementation often
deadlocked. Therefore, no further evaluation of this imple-
mentation was undertaken.
The particular problem with achieving consistency and

any reasonable performance in the CmRDT-C implementa-
tion is the maximum length of the queue. Ordering of OpN-
odes on the queue according to vector clocks is not unique
and as the queue grows in size, this non-uniqueness becomes
more problematic. On the other hand, should the queue be
too small, concurrent operations are not resolved in the same
queue processing run. Through experiments conducted on a
local machine, it was established that the length of the queue
should be less than 20 OpNodes for any chance of achieving
consistency.

4.4 Scalability Results
As the CmRDT-C implementation demonstrated poor per-
formance in a three-replica system, it was not evaluated for
scalability. To evaluate the performance of a five-replica sys-
tem, two identical Microsoft Azure VMs were added in the
Australia East and Brazil South regions. To evaluate the per-
formance of a seven-replica system, twomoremachines were
added in the Central Canada and UK South regions. Finally,
to create a ten-replica system, three more machines in Japan
East, Australia East and Brazil South regions were added. The
same set of 1,723 operations was evenly distributed between
all replicas in all runs. Results are presented in figures 10, 11
and 12 for CvRDT-GC, CvRDT and CmRDT-O respectively.
Overall, in the case of the CvRDT implementations the

latency did not significantly increase once the additional
replicas were added. For the most part, from the end-user’s
perspective, latencies of all systems hovered in the range of
100-150ms under all throughputs. It should be noted that end-
to-end latencies are of course influenced by the geographic
distribution of VMs and are skewed by the addition of VMs
in distant regions. Perfect eventual consistency was achieved
in all cases.
The performance of the CmRDT-O implementation de-

creased at lower throughput thresholds as more machines
were added. In particular, while the three-replica system
demonstrated acceptable latency at 175 ops/s, this was less
so the case for the five and seven-replica systems and was
certainly not the case for the ten-replica system. The ten-
replica system demonstrated acceptable latency only up to
and including the throughput of 100 ops/s.

Figure 10: Scalability of the CvRDT-GC Implementa-
tion

Chevrotain: A Conflict-free Replicated Data Type Key-Value Store

Figure 11: Scalability of the CvRDT Implementation

Figure 12: Scalability of the CmRDT-O Implementation

4.5 Comparison with MongoDB
MongoDB’s built-in replication system was setup in three,
five, seven and ten-replica configurations. The VMs in the
Central Canada region was always designated as the primary
and all other replicas were secondaries. Reads from secon-
daries were enabled. Chevortain client send the same set
of 1,723 commands to the primary replica and the checker
package queried the database copies of all replicas in the
system. The systems were subjected to the same through-
puts as Chevortain’s replicas and end-to-end latencies were
measured in all cases. Results are shown in 13.
The results exhibited an interesting phenomena. At first,

latencies started out at 150ms at a throughput of 10 ops/s and,
as expected, gradually increased to about 2s at a through-
put of 1000 ops/s. However, beyond 1000 ops/s, latencies

remained steady and while the client did try to emulate
throughputs of up to 10 000 ops/s, the actual measured
throughput stayed fixed at 1000 ops/s. Therefore, MongoDB’s
built-in replication system wasn’t able to accept throughputs
greater than 1000 ops/s. Therefore, Chevortain’s CvRDT im-
plementations were able to sustain higher throughputs in
this case, at the expense of the additional merge delays.

Figure 13: Scalability of MongoDB’s built-in Replica-
tion System

5 APPLICATIONS AND USE CASES
There are numerous applications of replicated key-value
stores. Some of the simpler ones include basic hash tables
that could be used to store usernames and passwords or a list
of network servers and their current statuses. One slightly
more involved application is a distributed web crawler that
builds a web page link directed graph (DG). Starting from
some page on the web, a DG could be constructed to capture
the relationship between web pages reachable from that
page. Each page is represented by a vertex and each link is
represented by an edge. Such DGs are used in the Page Rank
algorithm originally invented by Google [9].

Any graph could be represented as a key-value store with
the keys being vertices and values for each key capturing
the list of neighboring vertices to that the vertex. See fig-
ures 14 and 15 for an example of web page link DG and its
representation as a key-value store.

The web page link DG framework was built a as an appli-
cation proof-of-concept to Chevrotain. A client communicat-
ing with a certain replica is given a starting Wikipedia page
(for example “Java”) and crawls any webpages originating
from that page up to a certain depth, sending commands to
Chevrotain to insert keys and values as pages are traversed.
Other clients are given other starting webpages and send

Sasha Avreline

Figure 14: Sample Web Page Link Directed Graph

Figure 15: Adjacency List Representation of a Sample
Web Page Link Directed Graph

commands to their respective Chevrotain replicas. Chevro-
tain replicas then replicate the commands or exchange state
to arrive at a uniform view of the Wikipedia page DG. The
Chevrotain implementations were tested using this frame-
work and achieved perfect eventual consistency; however,
this framework was not used for any benchmark measure-
ments at this time.

6 FUTUREWORK
Future work on this project would involve making Chevro-
tain more robust to failures and more optimized for perfor-
mance. One of the goals would be to equip the CvRDT im-
plementation with a better protocol for reaching agreement
on the current safe tick among all replicas and responding to
leader failures. In particular, Golang Paxos implementations
[4] could be explored to address this. The implementation of
CBCAST used in CmRDT would need to be revised. Another
goal would be to have CmRDT implementations be better
suited to handle lengthy replica failures: should a replica be
offline for an extended period of time, it would receive the
entire state update as a single message, rather than receiving
a series of messages containing individual operations.

Other test suites should be explored to gather performance
measurements and evaluate robustness of Chevrotain. In
particular, it would be interesting to discover test suites that

perform very well with some implementation of Chevrotain
and poorly with others.
A more interesting web crawling experiment would be

to have Chevrotain replicas situated in different geograph-
ical regions crawl web pages located in those regions and
only occasionally exchange states between themselves. In
particular, it would be interesting to see if there would be a
performance gain in comparison to a web crawler situated in
a single region crawling pages from all over the globe from
there.

7 RELATEDWORK
The use of CRDTs is very widespread and there are several ex-
cellent CRDT libraries, most of them are written in JavaScript
[3]. Many of those are domain specific and not directly re-
lated to key-value stores, such as the Automerge library
for JSON files [1]. However, many modern databases either
support or are adapted to support CRDT frameworks. One
example is the Microsoft Azure CosmosDB that supports
CRDTs and either uses a LWW policy to resolve conflicts or
requires users to supply a custom JavaScript file that specifies
conflict resolution semantics [2].

Perhaps the closest work to this project is Roshi, which is
a Golang implementation of an event store based on a CRDT
LWW-element-set with limited inline garbage collection [7].
Moreover, Roshi is built on top of Redis, a distributed key-
value store [6]. Roshi originated from the need to manage
social media events in SoundCloud (for example, reposts of
music tracks).

8 CONCLUSION
Chevrotain is a replicated key value store that achieves even-
tual consistency through the use of conflict-free replicated
data types (CRDTs). In this paper, we studied three differ-
ent implementations of Chevrotain, one of which was state-
based and the other two were operation-based, either with or
without limited synchronization. The state-based implemen-
tation (CvRDT) performed best. This implementation, from
an end-user’s perspective, maintained a latency in the range
of 100-150ms under throughputs of up to 10 000 ops/s and
systems with up to ten geographically distributed replicas.
From that perspective it was able to maintain throughput
higher than that of MongoDB’s built-in replication system.
However, this was at the expense of additional 7-22s server-
side delays needed to merge the states. Those delays were di-
rectly a function of the specified time interval between state
exchanges. The CmRDT-O implementation demonstrated
acceptable performance for throughputs of up to 175 ops/s
in a three-replica system and for throughputs of up to 100
ops/s in a ten-replica system. It is hypothesized that the

Chevrotain: A Conflict-free Replicated Data Type Key-Value Store

implementation of CBCAST would need to be further ex-
plored to achieve better results with this implementation.
The CmRDT-C implementation was the least performant and
suffered from both the logical and computational complexi-
ties of ordering OpNodes according to vector clocks on the
queue.

ACKNOWLEDGEMENTS
The author thanks Prof. Ivan Beschastnikh for his insight
and feedback throughout this project and the permission
to adopt the GoVector package for this project’s needs. The
author also appreciates the Microsoft Azure Education credit
received from Prof. Beschastnikh and Microsoft Azure. Fi-
nally, the author acknowledges the use of UBC’s MATLAB
student license for constructing the figures for this paper.

REFERENCES
[1] 2020. Automerge. https://github.com/automerge/automerge
[2] 2020. Azure Cosmos DB. https://azure.microsoft.com/en-us/services/

cosmos-db/
[3] 2020. Code: Conflict-free Replicated Data Types. https://crdt.tech/

implementations
[4] 2020. GoDoc: Paxos. https://godoc.org/github.com/kr/paxos
[5] 2020. GoVector. https://github.com/DistributedClocks/GoVector
[6] 2020. Redis. https://redis.io/

[7] 2020. Roshi. https://github.com/soundcloud/roshi
[8] Roberto Baldoni and Michel Raynal. 2002. Fundamentals of distributed

computing: A practical tour of vector clock systems. IEEE Distributed
Systems Online 3, 2 (2002), 12.

[9] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale
hypertextual web search engine. (1998).

[10] B. A. Davey and H. A. Priestley. 2002. Introduction to lattices and order
(2nd ed.). Cambridge University Press, Cambridge, UK;New York, NY;.

[11] TimKraska,MartinHentschel, GustavoAlonso, andDonald Kossmann.
2009. Consistency rationing in the cloud: pay only when it matters.
Proceedings of the VLDB Endowment 2, 1 (2009), 253–264.

[12] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno
Preguiça, and Rodrigo Rodrigues. 2012. Making geo-replicated sys-
tems fast as possible, consistent when necessary. In Presented as part
of the 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 12). 265–278.

[13] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of convergent and commutative repli-
cated data types. (2011).

[14] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free replicated data types. In Symposium on Self-
Stabilizing Systems. Springer, 386–400.

[15] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li. 2011.
Transactional storage for geo-replicated systems. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles.
385–400.

[16] Robbert Van Renesse, Kenneth P Birman, and Silvano Maffeis. 1996.
Horus: A flexible group communication system. Commun. ACM 39, 4
(1996), 76–83.

https://github.com/automerge/automerge
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://crdt.tech/implementations
https://crdt.tech/implementations
https://godoc.org/github.com/kr/paxos
https://github.com/DistributedClocks/GoVector
https://redis.io/
https://github.com/soundcloud/roshi

	Abstract
	1 Introduction
	2 Background
	2.1 CvRDT
	2.2 CmRDT

	3 Design and Implementation
	3.1 CvRDT
	3.2 Types of Conflicts in CmRDT
	3.3 CmRDT-O: Optimistic Approach
	3.4 CmRDT-C: Conservative Approach

	4 Evaluation
	4.1 Methodology
	4.2 Initial Results
	4.3 CmRDT-C Results
	4.4 Scalability Results
	4.5 Comparison with MongoDB

	5 Applications and Use Cases
	6 Future Work
	7 Related Work
	8 Conclusion
	References

